1 2 3 4	In the quest for alternatives to microbial cellulase mix production: Corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars
5	Sang-Hyuck Park ¹ , Callista Ransom ¹ , Chuansheng Mei ² , Robab Sabzikar ¹ , Chunfang Qi ¹ , Shishir
6	Chundawat ³ , Bruce Dale ³ and Mariam Sticklen ^{1*}
7	
8 9	¹ Crop and Soil Sciences Dept., Michigan State University, East Lansing, MI 48824
10 11	² The institute for Advanced Learning and Research, 150 Slayton Ave., Danville, VA24541
12 13	³ Chemical Engineering and Materials Science Dept., Michigan State University, MI 48824
14	* Corresponding author: E-mail: stickle1@msu.edu

15 Abstract

16

17 BACKGROUND: Production of cellulosic ethanol is still expensive as compared to corn (maize) 18 grain ethanol due to the high costs in bulk production of microbial cellulases. At least three 19 cellulases including endo-cellulase, exo-cellulase and cellobiase are needed to convert cellulosic 20 biomass into fermentable sugars. All these cellulases could be self-produced within cells of 21 transgenic bio-energy crops. We have recently reported the production of heterologous 22 Acidothermus cellulolyticus (E1) endo-cellulase in endoplasmic reticulum and mitochondria of 23 green tissues of transgenic corn plants, and confirmed that the heterologous E1 converts cellulose 24 into fermentable sugars.

25

26 RESULTS: Biologically active A. cellulolyticus E1, Trichoderma reesei 1,4- β -27 cellobiohydrolases I (CBH I) exo-cellulase and bovine rumen *Butyrivibrio fibrisolvens* cellobiase

- 28 were expressed in corn plant endoplasmic reticulum (ER), apoplast (cell wall areas) and vacuole
- respectively. Our results show that the ratio of 1:4:1 (E1:CBH I:Cellobiase) crude heterologous
- 30 cellulases is ideal for converting Ammonia Fiber Explosion (AFEX) pretreated corn stover into
- 31 fermentable sugars.32

33 CONCLUSIONS: Corn plants that express all three biologically active heterologous cellulases

34 within their cellulosic biomass to facilitate conversion of pretreated corn stover into fermentable

35 sugars is a step forward in the quest for alternatives to the present microbial cellulase mix

- 36 production for cellulosic biofuels.
- 37

Keywords: E1, endo-cellulase; CBH I, 1,4-β-cellobiohydrolases I; cellobiase; corn; maize;

39 fermentable sugar; biofuels; AFEX.

40 41	With the 2003 awakening report that the United States held 3% of the world's petroleum
42	reserves, and consumed 25% of the world's petroleum consumption
43	(http://www1.eere.energy.gov/vehiclesandfuels/facts/2004/fcvt_fotw336.html), the U.S.
44	government urged the agricultural and petrochemical industries to find and implement biofuels
45	as alternatives to fossil fuels to reduce the nation's dependence on foreign oil. A report resulted
46	in the 2005 publication of the USDA-DOE documents the availability of U.S. lands for annual
47	production of one billion tons of lignocellulosic matter in order to replace 30% of the foreign oil
48	import to the U.S. by 2030
49	(http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf).
50	Plant lignocellulosic biofuels are considered as excellent alternative to petroleum fuel,
51	gasoline. Plants annually produce 180 billion tons of cellulose at the global level, ¹ and as the
52	most abundant biopolymer on earth, cellulose is indeed the most promising renewable energy
53	source for biofuels production.
54	Despite the great potential of lignocellulosic biofuels, their production costs heavily
55	depend on how cheap cellulase enzymes are produced and how efficiently lignocellulosic
56	materials are broken down. At present, cellulase enzymes are produced in microbial bioreactors
57	at approximate costs of \$1.00 per gallon of ethanol ² which impedes the commercialization of
58	cellulosic bioethanol. Therefore, the production costs of the microbially-produced commercial
59	cellulases need to be further reduced in order to make the cellulosic biofuel technology
60	competitive with corn grain ethanol.
61	At least three different cellulase enzymes are required to break down plant cell wall
62	cellulose for cellulosic biofuel production. The plant secondary cell walls are mainly composed
63	of crystalline cellulose, varying mixtures of hemicellulose and lignin. Pretreatment of the

64	lignocellulosic biomass is necessary prior to enzymatic hydrolysis because the access of enzymes
65	to cellulose is restricted by lignin-hemicellulose interference. Pretreatments (e.g., AFEX) break
66	the lignin seal, disrupt the crystalline structure of macro- and microfibrils and increase the pore
67	volume and available surface area. These physicochemical changes allow the enzymes to
68	penetrate into the lignocellulosic fibers which render them amenable to enzymatic hydrolysis. ^{3, 4}
69	The three cellulases include endo- and exo-cellulases and cellobiases. The endo-
70	cellulases such as β -1,4-glucanases (e.g., Cel5a; E1; EC 3.2.1.4, Accession no. U33212)
71	randomly cleave β -1,4-glucan along the polysaccharide chain and produce a new reducing and
72	non-reducing end of the cellulose strand. After the reaction of an endo-cellulase, the smaller
73	glucan chains are further hydrolyzed by exo-cellulases such as $1,4-\beta$ -cellobiohydrolases I or
74	CBH I (Cel7a; EC 3.2.1.91. Accession no. E00389) which cleaves from the reducing ends, or the
75	CBH II (Cel6a; EC 3.2.1.21, Accession no. M55080) which cleaves from the non-reducing ends
76	of cellulose chains. ⁵
77	The hydrolysis of cellulose due to synergistic action of endo- and exo- cellulases results
78	in dimer glucose chains or cellobiose. The cellobiose can be further converted into the monomer
79	glucose by cellobiases such as β -1,4-glucosidase 1 (EC 3.2.1.21, Accession no. M31120). The β -
80	1,4-glucosidase 1 has been grouped into two glycosyl hydrolase sub-families, sub-family A and
81	sub-family B. Sub-family A includes plant and non-rumen prokaryotic cellobiases. Sub-family B
82	includes fungal cellobiases such as the one produced in <i>T. reesei</i> , <i>Aspergillus niger</i> , and <i>A</i> .
83	aculeatus, ^{6,7} and rumen bacteria such as the anaerobic bovine symbiotic Butyrivibrio fibrisolvens
84	used in our studies. Cellobiases also act as cellulase inducers and transcriptional regulators. ⁸
85	Cellobiase is only needed at about 100-1000 times lower amounts than endo and exo-cellulases
86	for hydrolysis of cellulose. ⁹

To reduce the costs of cellulases, we produced biologically active Acidothermus 87 cellulolyticus E1, Trichoderma reesei CBH I, and bovine rumen Butyrivibrio fibrisolvens 88 89 cellobiase in three different sub-cellular compartments of three different sets of transgenic corn 90 plants. Then, we extracted plant-produced crude proteins containing each heterologous cellulase, 91 mixed them together and added the mixture in certain ratios to Ammonia Fiber Explosion (AFEX) pretreated corn stover.¹⁰ We found that under our conditions, certain ratio of the 92 93 heterologous multicellulase mix was the most effective for cellulose conversion into glucose. In 94 this research, we accomplish production of all three heterologous cellulases in corn plants in a 95 cost-effective manner and suggest the feasible application of the plant-produced heterologous 96 multicellulase mix in biofuel industries. Previously, we found the composition of corn stover to include 34.4% glucan and 22.8% 97 xylan.¹¹ Theoretically, production of a few heterologous cellulases should have no effect on corn 98 99 stover composition. Furthermore, the composition of corn stover is nearly identical in AFEXpretreated and untreated corn stover.^{4, 12} 100 101 102 103 **MATERIALS AND METHODS** 104 *Co-transformation vectors* 105 There are five transformation vectors included in our experiments (Fig. 1). The pE1ER contains the A. *cellulolvticus* E1 gene¹³ included in ImpactVectorTM. This vector has been 106

- 107 designed based on the green-specific Rubisco promoter and the signal peptide sequences to
- 108 target E1 into the ER as described.¹⁴

109 The pDM302 (Accession no. X17220) contains the bar gene encoding phosphinothricin

110 acetyltransferase (PAT) as a selectable marker. The gene regulated by the rice actin 1 (Act1)

111 promoter and nos terminator.¹⁵

112 The pApo is a binary vector targeting the CBH I gene ¹⁶ into apoplast. This vector was 113 constructed using the *T. reesei* CBH I gene. The gene was obtained from digestion of the 114 pMZ766-CBH I with XbaI enzyme and the released CBH I gene cassette was then ligated into 115 pCAMBIA3303. This vector contains the CaMV 35S promoter, the tobacco mosaic virus 116 translational enhancer (Ω), the tobacco pathogenesis-related protein 1a (Pr1a) signal peptide for 117 apoplast targeting, the six histidines, enterokinase recognition site (EK) and the polyadenylation 118 signal from nopaline synthase gene (3' nos).

The pBGVac, or pUC1813,¹⁷ contains the bglA gene ¹⁸ encoding *B. fibrisolvens* H17c βglucosidase, the ER leading sequence, the vacuole-targeting signal peptide (VT), and the CaMV
35S promoter and terminator.

122 The pGreen ¹⁹ is a binary vector containing the bar selectable marker gene regulated by 123 the CaMV 35S promoter and nos terminator, and the FLOWERING LOCUS C (FLC) gene 124 regulated by the CaMV 35S promoter and nos terminator. This vector also contains T-DNA left 125 and right borders and carries the nptII gene for bacterial resistance to Kanamycin.

126

127 Corn genetic transformation and production of transgenic progenies

Highly proliferating, immature-embryo-derived Hi II embryogenic corn calli were cobombarded via the BiolisticTM gun with a 1:1 ratio of the pE1ER, pCBH-IApo or pBGVac, and either the pDM302¹⁵ or pGreen constructs¹⁹ containing the bar herbicide resistance selectable marker gene. In vitro culture, phosphinothricin (PPT) resistant callus was selected based on our

132	standard procedures ²⁰ . The herbicide resistant plants were acclimated in a growth chamber, and
133	then transferred to a greenhouse until maturity. Fertile first generation transgenic plants were
134	self-pollinated and seeds were harvested 35-45 days after pollination, when they were dry.
135 136	Transgene integration and transcription analyses
137	The PCR analyses were performed on both first (T0) and second (T1) generation
138	transgenic plants to confirm the presence of transgenes. Northern blotting was performed to
139	confirm transcription of transgenes. Total RNA was isolated from putatively transgenic and
140	wild-type control untransformed plants using Trizol reagent following the manufacturer
141	instructions (Invitrogen, CA). RNA gel blot analysis was carried out following modifications of
142	our previous procedure. ²⁰
143 144	Preparation of crude plant protein extracts and western blotting
145	Proteins were extracted from wild-type control untransformed and T0 E1 transgenic leaf
146	tissues as described before. ¹⁴ For crude protein extraction from T0 CBH I transgenic corn, 100
147	mg of leaf disks was ground in 4 volumes of ice-cold extraction buffer. The extract buffer
148	contained 80 mM MES, pH 5.5, 10 mM 2-mercaptoethanol, 10 mM EDTA 0.1% sodium N-
149	lauroylsarcosinate, 0.1% Triton X-100, 1 mM PMSF, 10 M leupeptin, and 1 g/ml each of
150	aprotinin, pepstatin A, and chymostatin. The supernatant from the crude extract which was
151	centrifuged at 15,000 g and 4 °C for 10 min was quantified using Bradford method. ²¹
152	The Invitrogen NuPAGE® Bis-Tris Discontinuous Buffer System with a 10%
153	NuPAGE® Novex Bis-Tris Pre-Cast Gel was used for Western blotting of T0 transgenic plants
154	according to the manufacturer instruction (Invitrogen, CA).
1.5.5	

156 Biological activities of heterologous E1, CBH I and cellobiase

157	The biological activities of heterologous E1 and CBH I were measured in T0 transgenic
158	plants following our previous research. ² Briefly, 10 µl of a set of diluted crude protein containing
159	each heterologous cellulase extract was mixed with 100 μ l reaction buffer (50 mM sodium
160	acetate pH 5.0 containing 1.0 mM of substrate MUC, 4-methylumbelliferone β -D-cellobioside)
161	in 96-well plates. Plates were covered and incubated at 65 °C in the dark for 30 min. Then, 100
162	μ l of stop buffer (100 mM glycine, pH 10.3) was added and the fluorophore 4-
163	methylumbelliferone (MU; the product of E1 or CBH I hydrolysis of the substrate MUC) was
164	measured by reading the fluorescence at 465 nm using SPECTRAmax M2 device (Molecular
165	Devices Inc., CA) at of 360 nm excitation wavelength. After subtracting the background, the
166	activity of each sample was calculated using a MU standard curve which contributed to
167	deactivated enzyme extract.
168	The biological activity of heterologous cellobiase of T0 plants was measured via the
169	modification of our standard procedure, ¹⁴ measuring the hydrolysis of <i>p</i> -nitro-phenyl- β -D-
170	glucopyranoside ($pNP\beta G$), The incubation mixture included 2 mM $pNP\beta G$, 50 mM sodium
171	phosphate buffer (pH 6.5) and 30 μ l crude protein in a total volume of 100 μ l. The reaction was
172	conducted at 40°C for 15 min and stopped by the addition of 300 μl 1.0 M Na ₂ CO ₃ . The amount
173	of <i>p</i> -nitrophenol (<i>p</i> NP) released was determined using a spectrophotometer via measuring the
174	absorbance of the solution at 415 nm. Standard solutions between 0-100 nmol p NP were also
175	included.

176

177 Percent heterologous E1 and cellobiase in plant crude protein extracts

178	The percentage of heterologous E1 in crude protein extract was measured in T0
179	transgenic plants based on densitometry analysis of Western blot X-ray film. The percentages of
180	the heterologous cellobiase in crude protein extract was measured via the standard curve
181	representing the biological activities of different dilutions of the purified A. niger cellobiase ²²
182	(80% pure; isolated from Novozyme TM 188).
183	
184	Estimation of heterologous cellulases per ton of dry mature corn stover versus corn silage
185	Based on their plant crude protein extracts, two reports were used to estimate the amount
186	of heterologous cellulases per ton of dry mature corn stover versus corn silage. The first report is
187	from the Department of Animal Science at North Carolina State University
188	(http://www.agr.state.nc.us/drought/documents/InterpretingForageAnalysisReportsforcornstalks.
189	pdf). We calculated the amount of heterologous cellulases based on this report showing that 5%
190	of dry mature corn stover is proteins, and approximately 40 % of these proteins are water soluble
191	(total soluble proteins). The second report is from Manitoba Agriculture, Food and Rural
192	Initiatives (http://www.gov.mb.ca/agriculture/crops/specialcrops/bii01s02.html) which indicates
193	that about 9.4 % of corn silage is proteins.
194	

195 Optimization of ratio of E1 to CBH I for maximizing CMC conversion

Different ratios of E1 to CBH I in T0 transgenic plants were used in order to find an ideal
ratio for carboxymethyl cellulose (CMC) conversion. The enzymatic hydrolysis experiment took
place in a vial containing 1% CMC (Sigma-Aldrich, St Louis, MO) substrate in a 15 ml reaction
buffer (7.5 ml of 100 mM sodium citrate buffer, pH 4.8). In addition, 60 µl (600 µg) tetracycline
and 45 µl (450 µg) cycloheximide were added to each vial to prevent the growth of

microorganisms during incubation and hydrolysis reaction. The reaction was supplemented with
A. <i>niger</i> cellobiase (Novozyme TM 188) to convert the cellobiose to glucose. Distilled water was
added to bring the total volume in each vial to 15 ml. All reactions were performed in duplicate
to test reproducibility. The hydrolysis reaction was carried out at 50 °C with a shaker speed of 90
rpm. About 1 ml of each sample was taken out from the hydrolysis reaction after 72 h of
hydrolysis, and filtered using a 0.2 μ m syringe filter and kept frozen. The amount of glucose
produced in the enzyme blank and substrate blank were subtracted from the respective
hydrolyzed glucose levels. The equivalent glucose concentration was quantified using Glucose
Analyzer (YSI 2700 SELECT [™] Biochemistry Analyzer, Yellow Springs, OH) using glucose as
the standard.
Optimization of ratio of E1 to CBH I to cellobiase for maximizing AFEX pretreated corn stover conversion
The DNS assay was employed to quantify the reducing sugar produced as the result of
enzymatic hydrolysis, determining the optimum ratio of all three heterologous enzymes produced
in T0 transgenic plants on conversion of AFEX pretreated corn stover into fermentable sugars. ²³
DNS is a colorimetric reagent used in standard assays to detect reducing sugars. For conversion,
1% glucan loading equivalent AFEX pretreated corn stover was hydrolyzed using the microplate
hydrolysis conditions as described elsewhere. ¹¹ Also, different ratios of E1:CBH I:Cellobiase
were produced by diluting of crude proteins of different transgenic plants. Each of the different
crude cellulase mix ratios were added to 1% glucan loading equivalent AFEX pretreated corn
stover in microplates. After hydrolysis, 50 μ l sample supernatant from each vial was taken and
placed in each well of a 96 well plate, 100 µl DNS was added to each well, and the color was

226	plate prior to heating to avoid evaporation. The reading was done with 100 μl sub-samples using
227	a UV spectrophotometer at 540 nm. The readings were compared to glucose standards, and the
228	actual percent AFEX pretreated corn stover conversion into glucose equivalents was calculated.
229	In these assays, the enzyme and substrate blanks were included, and all reactions were done in
230	triplicate to measure accuracy.
231	T0 transgenic E1, CBH I and cellobiose were self bred for production of T1 plants, and
232	seeds were collected for further analyses. PCR analyses were performed to confirm the transfer
233	of each transgene into its next generation.
234	
235	RESULTS
236 237	Plant genetic engineering followed by confirmation of transgene integration and expression
238	Herbicide resistant transgenic corn plants were produced from immature embryo-derived
239	cell lines biolistically co-bombarded with each of the three constructs (pE1ER, pCBH-IApo, and
240	pBG1Vac) containing the cellulase genes and one of the two constructs containing the bar gene
241	(pDM302 and pGreen). We also produced several CBH I independent transgenic tobacco plants
242	via the Agrobacterium transformation system because most independent transgenic CBH I corn
243	lines died prior to the completion of our studies due to our greenhouse conditions. Polymerase
244	chain reaction (PCR) analysis of herbicide resistant plants confirmed the presence of E1 gene in
245	plants (data not shown), and Northern blotting confirmed the E1 transcription (Fig. 2a) in leaves
246	of PCR positive plants. The production of heterologous E1 protein was confirmed via Western
247	blotting using monoclonal E1 antibody (Fig. 2a).
248	A total of 30 mature independent CBH I transgenic corn lines were produced. Prior to

249 death of some of these plants, PCR analysis of CBH I confirmed the presence and Northern

blotting confirmed the transcription of CBH I transgene in corn plants (Fig. 2b). In addition, PCR
confirmed the presence, and Western blotting confirmed the production of heterologous CBH I
protein in tobacco plants (Fig. 2c).

A total of 35 mature independent corn cellobiase transgenic lines were produced. PCR analysis confirmed the presence, and Northern blotting confirmed the transcription of cellobiase transgene in corn plants (Fig. 1d).

256

257 Biological activities of heterologous cellulases

Biological activity of each of the heterologous cellulases is shown in Fig. 3. In Fig. 3a, enzymatic activity of E1 was measured in leaves of transgenic corn plants. One unit of E1 activity is defined by measuring the amount of 4MU released from reaction of one mg of plant total soluble protein (TSP or crude protein extract) added into one mM of 4MUC in one minute. Fig. 3a confirms no activity in the wild-type control leaf while leaves from different independent transgenic E1 lines show different levels of activities, with line 19e showing the highest (205 nmol 4MU/mg TSP/min).

265 Enzymatic activity of CBH I was measured in leaves of transgenic corn and transgenic 266 tobacco plants (Fig. 3b and 3c). In Fig. 3b, one unit of CBH I activity is defined by measuring 267 the amount of 4MU released from reaction of one mg of crude protein added into one mM of 268 4MUC in one hour. Although wild-type control plant leaf shows a small amount of CBH I 269 activity, transgenic corn leaves (61a and 61b) show 1.5 to 2.5 times greater activity as compared 270 to their wild-type control plant leaf. In Fig. 3c, we used one unit of CBH I activity as defined by 271 measuring the amount of 4MU released from reaction of one picomole (pmol) of crude protein 272 added into one mM of 4MUC in one hour. Transgenic tobacco leaf (line 1-3) shows 25 times

273	greater activity than its wild-type control tobacco plant leaf (Fig. 3c). Overall, the activity of
274	heterologous CBH I was much lower in transgenic corn than transgenic tobacco.
275	In Fig. 3d, enzymatic activity of cellobiase was measured in leaves of transgenic corn. In
276	Fig. 3d, one unit of cellobiase activity is defined by measuring the amount of pNP released from
277	reaction of one mg of crude protein added into one mM of $pNP\beta G$ in one minute. Fig. 3d
278	confirms that the wild-type control plant leaf had no activity while different independent
279	transgenic corn cellobiase lines show different levels of activities, with line 3-1 showing the
280	highest (5.475nmol pNPU/min).
281	We must indicate that the units for measuring the tobacco (Fig. 3c) and corn (Fig. 3b)
282	heterologous CBH I are very different. While corn heterologous CBH I was measured in nmol,
283	tobacco heterologous CBH I was measured in pmol due to its low activity.
284	
285	Carboxymethyl cellulose (CMC) conversion using heterologous cellulases
286	CMC substrate conversion into low molecular weight reducing sugars was performed
287	using the corn crude protein containing heterologous E1 or cellobiase. Fig. 4a shows that the four
288	corn E1 transgenic lines tested have significantly higher CMC conversion as compared to the
289	wild-type control corn plant. Fig. 4a shows that the crude protein containing corn-produced
290	heterologous E1 tested displays higher CMC conversion capacities, and Fig. 4b shows that the
291	crude protein containing heterologous cellobiase displays higher cellobiose conversion as
292	compared to the wild-type control crude protein.
293 294 295	Multicellulase enzyme mix ratio optimization for CMC and AFEX-pretreated corn stover conversion

It has been well documented that different cellulases work together synergistically to decrystallize and hydrolyze cellulose, and also much more CBH I enzyme is required for optimal conversion. Therefore, different ratios of E1:CBH I (1:4, 1:10 and 1:15) based on total protein concentration were used in the hydrolytic conversion of soluble cellulose CMC to glucose. The total proteins were extracted from E1 and CBH I transgenic tobacco plants, respectively. Fig. 5a shows that the ratio of 1:4 of E1:CBH I was the most effective ratio in cellulose-to-glucose conversion.

304 The ultimate goal of producing hydrolytic enzymes in plants is to use them in actual 305 cellulosic biomass conversion. Therefore, various combinations of corn-produced E1, CBH I and 306 cellobiase enzyme isolates were tested on AFEX pretreated corn stover representing 1% glucan 307 in 24 h hydrolysis reaction. Fig. 5b shows the amount of reducing sugars estimated by 308 dinitrosalicylic acid (DNS) assay, and the best ratio of E1:CBH I:cellobiase tested appears to be 309 a 1:4:1, with release of nearly 1 g/L glucose equivalents. Although the biological activities of 310 CBH I was relatively low, the conversion activity of the three plant-produced crude heterologous 311 enzymes at 1:4:1 ratio shows similar conversion effectiveness as compared to the commercial 312 enzyme Spezyme CP (SCP), meaning that the heterologous enzyme mixtures have the potential 313 to substitute or at least be used as supplements to commercially available cellulase mixtures. 314 Since the heterologous multicellulase enzyme mix shows efficient conversion of 315 pretreated corn stover, it is worthwhile to have estimations of heterologous cellulase productions 316 in mature corn stover dry matter versus corn silage. Table 1 represents the amount of 317 heterologous cellulases which could have been produced per ton dry mature corn stover versus 318 corn silage.

Using densitometry analysis, the heterologous E1 protein production was estimated to be up to 2% of transgenic corn leaf crude protein. Based on our calculations, the heterologous E1 could be produced up to 400 grams per ton of dry mature corn stover and 752 grams per ton of corn silage.

The heterologous cellobiase protein produced was estimated up to 3.11% of transgenic plant leaf crude protein extract. Based on our calculations, the heterologous cellobiase could be produced up to 622 grams per ton of dry mature corn stover and at 1165 grams per ton on corn silage.

327

328 **DISCUSSION**

329 Corn-produced heterologous multi-cellulases as a value-added biobased product

The demands for cellulosic biofuels as petroleum alternatives have surged within last few decades. Despite efforts made to date to increase the productivity of cellulase-producing microbes through genetic engineering, the high costs of microbial cellulase enzyme production still impede the commercialization of cellulosic ethanol industries. The production of microbial E1 and CBH I in different plants have already been reported ³, and human and corn cellobiase genes have been expressed in tobacco. ^{24, 25}

A. *cellulolyticus* E1 is thermostable which helps it to endure the relatively high
 temperature of pretreatment processes (example; AFEX pretreatment), and shows high specific
 affinity to cellulose derivatives such as CMC ²⁶ which was used in our studies for E1 enzymatic
 activity tests.

In this report, we have targeted the *A. cellulolyticus* E1 into corn ER. Our recent report ¹⁴
 indicated that the ER targeting is suitable for the accumulation of heterologous E1 because of the

342	fact that ER is the first site for protein synthesis and is known to contain a series of molecular
343	chaperones such as the ER Luminal Binding Protein (BiP) needed during protein folding,
344	assembly and preventing the transport of immature protein molecules. ²⁷⁻²⁹
345	We have targeted T. reesei CBH I into corn apoplast because this sub-cellular
346	compartment is a free diffusional space outside of the plasma membrane meaning that it has the
347	ability to accumulate large quantities of foreign proteins. The filamentous fungus T. reesei is
348	considered to be the most efficient cell wall degrading microbe, encoding for only 10 cellulolytic
349	enzymes including cellobiohydrolases. $^{30, 31}$ About 80-85% (40 g/L) of genetically modified <i>T</i> .
350	<i>reesei</i> extracellular proteins is cellobiohydrolases, among which 50-60% are CBH I ³² . In fact,
351	due to its importance, CBH I enzyme quantity has been increased up to 1.5 fold via genetic
352	engineering of <i>T. reesei.</i> ⁵
353	We have targeted the third heterologous cellulase, cellobiase, into corn vacuoles because
354	vacuoles occupy 30-90% (depending on plant maturity) of the cell volume, and therefore more
355	heterologous proteins may accumulate in mature transgenic plants. We selected the cellobiase
356	gene from bovine rumen <i>B. fibrisolvens</i> H17c 18 because its enzyme assists in enabling the
357	conversion of cellulosic matter of silage feed into energy in rumen.
358	
359	Using biologically active crude heterologous cellulases for saccharifying cellulosic biomass
360	It would have been ideal to use mixtures of pure E1, CBH I and cellobiase as positive
361	controls in Fig. 3. However, we only had pure E1 available in our laboratory. Fig. 3 shows the
362	biological activities of heterologous E1, CBH I and cellobiase. We used commercial pure
363	microbial E1 (provided by National Renewable Energy Laboratory; NREL) as positive control in

364	Fig. 3a. We also used a commercially available pure E1- CBH I mixture (SCP) and an impure
365	commercial microbial cellobiase as positive control (Fig. 5b).
366	Corn plants contain exo-glucanase genes and therefore exhibit background exo-glucanase
367	activities ³³ . It is also possible that wild-type tobacco plants have exo-cellulase activities. These
368	might be the reasons that the wild-type corn (Fig. 3b) and tobacco (Fig. 3c) plants have shown
369	some exo-glucanase biological activities. Also, corn contains endo-glucanase 34 and β -
370	glucosidase (cellobiase) genes. ²⁵ The reason that the wild-type corn plants did not show any
371	biological activity of E1 (Fig. 3a) or cellobiase (Fig. 3d) might be because either these two genes
372	were not on to produce these enzymes when we harvested the plant leaves for analysis, or the
373	amount of activity of these endogenous cellulases were not sufficient for detection. The activity
374	assay for detecting E1 and CBH I were the same.
375	In Fig. 3a, we show the biological activity of E1 in nmol 4MU/mg TSP per minute.
376	However, in Fig. 3b, we show the biological activity of E1 in nmol 4MU/mg TSP per hour
377	because the heterologous E1 had much more activity as compared to the heterologous CBH I,
378	and therefore less time is needed for the analysis of the heterologous E1. For the activity assay,
379	we used EDTA in our extraction buffer for production of E1 and CBH I crude proteins.
380	Considering that EDTA is known to partially inhibit the biological activities of cellulases, ³⁵ the
381	biological activity of heterologous cellulases produced in plants in our studies might have been
382	much more, should we have used an alternative to EDTA in our extraction buffer.
383	To calculate the biological activity of each heterologous cellulase in unit, we used equal
384	amount of crude plant proteins, substrates and incubation time. There is an inconsistency
385	between data presented in Table 1 and Fig. 3. In Fig. 3a, the 21g column (the column related to
386	crude protein of independent transgenic corn line) should have been higher than the 19e column

because we used higher percentage of E1 in 21g. This inconsistency might be due to the fact that non-measureable factors such as expansins and other cell wall loosening proteins in crude

389 protein extracts of different independent transgenic lines might have been different in 21g as

compared to 19e.

391

387

388

392 Crude heterologous cellulase mix ratio

At present, a naturally produced mixture of endo-glucanase, exo-glucanase and cellobiase is extracted from microbes and added to pretreated corn stover for enzymatic hydrolysis. When NREL mixed pure microbial E1 and CBH I and added the mixture to the pretreated corn stover in different ratios, a ratio of 1:17 (E1-CBH I) resulted in highest level of fermentable sugars produced (communication with Dr. Michael Himmel of NREL). Therefore, one of our research goals was to find the optimal ratio of plant-produced heterologous cellulases on AFEXpretreated corn stover for production of fermentable sugars.

400 We learned that a ratio of 1:4 of the crude E1 to CBH I was needed for production of the 401 highest level of glucose. Crude cellulases are advantageous over using purified cellulases 402 because plant crude proteins contain other useful molecules that cause cell wall loosening. For example, expansins ³⁶⁻³⁸ break hydrogen bonding between cellulose microfibrils or between 403 cellulose and other cell wall polysaccharides without having any hydrolytic activity.³⁹ Both the 404 405 amino acid sequence and the role of plant expansins are similar to those of T. reesei swollenin 406 which is reported to weaken filter paper (cellulose) and disrupt other cellulosic materials such as cotton fibers. 40 407

In our studies, we produced three different cellulases in three sets of independent
transgenic plants, and then mixed all three plant crude proteins in a ratio of 1:4:1 (E1:CBH I:

410	cellobiase) for conversion of AFEX-pretreated corn stover into fermentable sugars because this
411	ratio was most effective under our experimental conditions.
412	
413	Field level estimation of corn-produced heterologous cellulases
414	We extrapolated the amount of heterologous cellulases that could be produced in the field
415	per ton of mature dry corn stover
416	(http://www1.eere.energy.gov/biomass/pdfs/Biomass%202007%20Overview_Web.pdf) versus
417	corn silage (http://www.gov.mb.ca/agriculture/crops/specialcrops/bii01s02.html) based on data
418	produced from our greenhouse studies (Table 1). With these calculations, transgenic corn
419	reported here could have produced up to 400 grams of E1 and 622 grams of cellobiase per ton of
420	dry mature corn stover (third column) and up to 752 grams of E1and 1165.6 grams of
421	heterologous cellobiase per ton of corn silage (fourth column).
422	
423	Single cellulases gene transfer versus gene stacking
424	We chose to produce each cellulase enzyme in one set of transgenic corn plants instead of
425	using transgene stacking because we wished to assure the possible effect of each transgene on
426	plant health. We have started cross-breeding of these cellulase producing corn plants to combine
427	transgenes (to be reported elsewhere). Gene stacking in transgenic plants might be a good option,

429 same plant or to balance the ratio by adding certain cellulases. The idea of gene stacking comes

should one be able to control the ratio of production of heterologous cellulases produced in the

430 from bacterial cellulosome. Cellulosome is a large extracellular enzyme complex in certain

- 431 anaerobic bacteria which break down cellulose. Unlike our transgenic plants that carry different
- 432 heterologous cellulases in different sub-cellular compartments, cellulosomes are produced in

433 microbial cytosol as bacteria do not contain sub-cellular compartments. Cellulosome contains 434 nine different cellulases on the same structural base which is a "scaffolding protein" containing cellulose binding domains.⁴¹ The idea of assembling several cellulases as gene stacking on a 435 436 structural base could be applicable to crop plants should the optimum ratio be achieved. 437 Expression of multi-gene assembly also works when genes are translationally fused and 438 transferred to chloroplast genome. Plant chloroplasts can be genetically engineered with several 439 coding sequences controlled only under one promoter, a phenomenon that cannot occur in 440 nuclear transgenesis as presented here. The authors hope that the problems associated with 441 chloroplast transgenesis of cereal crops including corn will soon be resolved, because 442 translationally fused cellulases might be even more efficient for cell wall degradation than the 443 heterologous cellulase mix produced in our studies. For example, when the fusion cellulase 444 (CelYZ) produced from fusion of artificial heterologous endo 1,4-glucanase (CelZ) and exo1,4-445 glucanase (CelY) genes, regulated by tetA promoter/operator was successfully produced in 446 *Escherichia coli*, the hydrolytic activity of such fusion protein was three to four fold higher than 447 the sum of the activity of the combined CelZ and CelY due to the intra-molecular synergism of the fused cellulases in hydrolysis of crystalline cellulosic matter. ⁴² This means that it would 448 449 have been more beneficial, should we were able to produce the heterologous fused cellulase mix 450 in corn chloroplasts, extract the fusion cellulase, and add to pretreated lignocellulosic matter for 451 enzymatic hydrolysis, a cocktail of 12 heterologous hydrolytic enzymes were produced in tobacco via chloroplast transgenesis. 43 452

453

454 *Quest for alternatives to production of microbial cellulases*

455	According to a National Research Council report of the U.S. National Academies ⁴⁴ the				
456	chloroplast transgenesis platform has the major advantages of (1) relatively higher				
457	heterologous protein production, (2) reducing or preventing of transgene flow via pollen grain				
458	transfer in most flowering plants due to maternal inheritance of chloroplast genome, and (3)				
459	plastid genome is normally transferred via heterologous recombination allowing the site-				
460	specific insertion of transgenes in chloroplast genome, helping with reducing of "unintended				
461	phenotypic effects of transgenes".				
462	The nuclear transgenesis presented here and that of chloroplast transgenesis for				
463	production of multiple heterologous cellulases in tobacco ⁴³ are expected to advance the field of				
464	cellulosic biofuels by reducing the costs associated with production of cellulases in microbial				
465	systems. This is because plants use the free solar energy for protein production while microbial				
466	bioreactors require chemical energy inputs.				
467	The research presented here is indeed a step forward in the quest for commercialization				
468	of biomass crop-produced heterologous cellulases as an alternative or supplement to current				
469	microbial-based cellulase production for cellulosic biofuels.45				
470					

471 ACKNOWLEDGMENTS

472 We wish to thank Dr. Henry Daniell of University of Central Florida for comprehensive 473 review of this article. Also, we wish to thank the National Renewable Energy Laboratory 474 (NERL) for availability of E1 and CBH I monoclonal antibodies and purified microbial E1 and 475 CBH I. We thank Dr. K. Danna for the pZM766, Dr. R. Wu for the pDM302, Dr. A. Enyedi for 476 pUC1813 and Dr. R. Amasino for pGreen gene constructs. This study was financially supported 477 by the STTR grant to Edenspace Systems Corp, Consortium for Plant Biotechnology Research (CPBR), the USDA-DOE grant to Iowa State University, Michigan State University Research 478 479 Excellent Funds (REF), the Corn Marketing Program of Michigan, and the U.S. National Corn 480 Growers' Association.

482 **REFERENCES**

- 483
- 484 1. Emons AM and Mulder BM, How the deposition of cellulose microfibrils builds cell wall
 485 architecture. Trends in plant science 5:35-40 (2000).
- 486
 486
 487
 487
 488
 488
 488
 489
 489
 489
 489
 480
 480
 480
 480
 480
 481
 482
 483
 484
 484
 484
 485
 485
 486
 486
 486
 487
 487
 488
 488
 488
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
- 490 3. Sticklen M, Feedstock genetic engineering for biofuels. Crop science 47:2238-2248
 491 (2007).
- 492 4. Chundawat SP, Vismeh R, Sharma LN, Humpula JF, da Costa Sousa L, Chambliss CK,
 493 Jones AD, Balan V and Dale BE, Multifaceted characterization of cell wall
 494 decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid
- 495 based pretreatments. Bioresour Technol **101**:8429-8438 (2010).
- 496 5. Miettinen-Oinonen A, Paloheimo M, Lantto R and Suominen P, Enhanced production of
 497 cellobiohydrolases in *Trichoderma reesei* and evaluation of the new preparations in
 498 biofinishing of cotton. Journal of biotechnology 116:305-317 (2005).
- 499 6. Rojas A and Romeu A, A sequence analysis of the beta-glucosidase sub-family B. FEBS
 500 letters 378:93-97 (1996).
- 501 7. Murray P, Aro N, Collins C, Grassick A, Penttila M, Saloheimo M and Tuohy M,
 502 Expression in *Trichoderma reesei* and characterisation of a thermostable family 3 beta503 glucosidase from the moderately thermophilic fungus *Talaromyces emersonii*. Protein
 504 expression and purification 38:248-257 (2004).
- Fowler T and Brown RD, Jr., The bgl1 gene encoding extracellular beta-glucosidase from
 Trichoderma reesei is required for rapid induction of the cellulase complex. Molecular
 microbiology 6:3225-3235 (1992).
- 508 9. Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S,
 509 Ahmad A and Howard JA, Subcellular targeting is a key condition for high-level
 510 accumulation of cellulase protein in transgenic maize seed. Plant biotechnology journal
 511 5:709-719 (2007).
- 512 10. Vega-Sachez MÉ and Ronald PC, Genetic and biotechnological approaches for biofuel
 513 crop improvement. Current Opinion in Biotechnology 21:218-224 (2010).
- 514 11. Chundawat SP, Balan V and Dale BE, High-throughput microplate technique for
 515 enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 99:1281-1294
 516 (2008).
- 517 12. Chundawat SP, Venkatesh B and Dale BE, Effect of particle size based separation of
 518 milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng
 519 96:219-231 (2007).
- 520 13. Tucker MP, Mohagheghi A, Grohmann K and Himmel ME, Ultra-Thermostable
 521 Cellulases From Acidothermus cellulolyticus: Comparison of Temperature Optima with
 522 Previously Reported Cellulases. Nat Biotech 7:817-820 (1989).
- Mei C, Park SH, Sabzikar R, Qi C and Sticklen M, Green tissue-specific production of a
 microbial endo-cellulase in maize (*Zea mays* L.) endoplasmic-reticulum and
 mitochondria converts cellulose into fermentable sugars. J Chem Technol Biotechnol
 84:689-696 (2008).

McElrov D, Zhang W, Cao J and Wu R, Isolation of an efficient actin promoter for use in 527 15. 528 rice transformation. The Plant cell 2:163-171 (1990). 529 Klarskov K, Piens K, Stahlberg J, Hoj PB, Beeumen JV and Claeyssens M. 16. 530 Cellobiohydrolase I from Trichoderma reesei: identification of an active-site nucleophile 531 and additional information on sequence including the glycosylation pattern of the core 532 protein. Carbohydr Res 304:143-154 (1997). 533 17. Yao JQ, Genetic transformation of tobacco with a beta-glucosidase gene to induce 534 constitutive systemic acquired resistance against tobacco mosaic virus. PhD Dissertation 535 Western Michigan University, Kalamazoo, MI (2004). 536 18. Lin LL, Rumbak E, Zappe H, Thomson JA and Woods DR, Cloning, sequencing and 537 analysis of expression of a *Butyrivibrio fibrisolvens* gene encoding a beta-glucosidase. 538 Journal of general microbiology **136**:1567-1576 (1990). 539 19. Hellens RP, Edwards EA, Leyland NR, Bean S and Mullineaux PM, pGreen: a versatile 540 and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant 541 molecular biology 42:819-832 (2000). 542 20. Biswas GCG, Ransom C and Sticklen M, Expression of biologically active Acidothermus 543 cellulolyticus endoglucanase in transgenic maize plants. Plant Science 171:617-623 544 (2006).545 21. Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities 546 of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254 547 (1976). 548 22. Gao D, Chundawat SP, Krishnan C, Balan V and Dale BE, Mixture optimization of six 549 core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion 550 (AFEX) pretreated corn stover. Bioresour Technol 101:2770-2781. 551 23. Cai YJ, Chapman SJ, Buswell JA and Chang S-t, Production and Distribution of 552 Endoglucanase, Cellobiohydrolase, and beta -Glucosidase Components of the 553 Cellulolytic System of Volvariella volvacea, the Edible Straw Mushroom. Appl Environ 554 Microbiol 65:553-559 (1999). 555 24. Reggi S, Marchetti S, Patti T, De Amicis F, Cariati R, Bembi B and Fogher C, 556 Recombinant human acid beta-glucosidase stored in tobacco seed is stable, active and 557 taken up by human fibroblasts. Plant molecular biology 57:101-113 (2005). 558 25. Kiran NS, Polanska L, Fohlerova R, Mazura P, Valkova M, Smeral M, Zouhar J, 559 Malbeck J, Dobrev PI, Machackova I and Brzobohaty B, Ectopic over-expression of the 560 maize {beta}-glucosidase Zm-p60.1 perturbs cytokinin homeostasis in transgenic 561 tobacco. J Exp Bot 57:985-996 (2006). 562 Sakon J, Adney WS, Himmel ME, Thomas SR and Karplus PA, Crystal structure of 26. 563 thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex 564 with cellotetraose. Biochemistry 35:10648-10660 (1996). 565 27. Wrobel RL, GR OB and Boston RS, Comparative analysis of BiP gene expression in 566 maize endosperm. Gene 204:105-113 (1997). 567 Sticklen MB, Expediting the biofuels agenda via genetic manipulations of cellulosic 28. bioenergy crops. Biofuels, Bioproducts and Biorefining 3:448-455 (2009). 568 569 Randall JJ, Sutton DW, Hanson SF and Kemp JD, BiP and zein binding domains within 29. 570 the delta zein protein. Planta **221**:656-666 (2005). Wang L, Zhang Y and Gao P, A novel function for the cellulose binding module of 571 30. 572 cellobiohydrolase I. Science in China 51:620-629 (2008).

573	31.	Claeyssens M, van Tilbeurgh H, Kamerling JP, Berg J, Vrsanska M and Biely P, Studies
574		of the cellulolytic system of the filamentous fungus <i>Trichoderma reesei</i> QM 9414.
575		Substrate specificity and transfer activity of endoglucanase I. The Biochemical journal
5/6	22	270:251-256 (1990).
577 578	32.	scale cellulase production. Enzyme and microbial technology 10 :341-346 (1988).
579	33.	Huber DJ and Nevins DJ. Exoglucanases from Zea mays L. seedlings: their role in β-D-
580		glucan hydrolysis and their potential role in extension growth. Planta 155 :467-472
581		(1982).
582	34.	Hatfield R and Nevis DJ, Purification and properties of an endoglucanase isolated from
583		the cell walls of Zea mays seedlings. Carbohydrate Research 148 :265-278 (1986).
584	35.	Chinedu SN, Nwinyi CO and Okochi VI, Properties of endoglucanase of <i>Penicillium</i>
585		chrysogemum PCL501. Australian Journal of Basic and Applied Sciences 2:738-746
586		(2008).
587	36.	Shieh MW and Cosgrove DJ, Expansins. Journal of plant research 111 :149-157 (1998).
588	37.	Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL and McQueen-Mason
589		SJ, Plant expansins are a complex multigene family with an ancient evolutionary origin.
590		Plant physiology 128 :854-864 (2002).
591	38.	Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC and Blecker D, The
592		growing world of expansing. Plant & cell physiology 43 :1436-1444 (2002).
593	39	Brotman Y Briff E Viterbo A and Chet I Role of swollenin an expansin-like protein
594	071	from Trichoderma in plant root colonization Plant physiology 147 :779-789 (2008)
595	40	Saloheimo M. Paloheimo M. Hakola S. Pere I. Swanson B. Nyvssonen F. Bhatia A
596	10.	Ward M and Penttila M Swollenin a <i>Trichoderma reesei</i> protein with sequence
597		similarity to the plant expansing exhibits disruption activity on cellulosic materials
598		Furopean journal of biochemistry / FEBS 269 :4202-4211 (2002)
599	<i>4</i> 1	Doi RH and Kosugi A Cellulosomes: nlant-cell-wall-degrading enzyme complexes Nat
600	71.	Rev Microbiol 2:541-551 (2004)
601	42	Riedel K and Bronnenmeier K Intramolecular syneroism in an engineered exo-endo-1 4-
602	72.	beta-glucanase fusion protein. Molecular microbiology 28 :767-775 (1998).
603	43.	Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE and Daniell H, Chloroplast-
604		derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable
605		sugars. Plant Biotechnol J 8:332-350 (2010).
606	44.	Kirk TK, Carlson JE, Ellstrand N, Kapuscinski AR, Lumpkin TA, Magnus DC, Nester
607		EW, Peloquin JJ, Snow AA, Sticklen M and Turner PE, Biological confinement of
608		genetically engineered organisms. National research council of the national academies,
609		Washington, DC, pp. 79-81 (2004).
610	45.	Sticklen M, Is Large-Scale Production of Biofuel Possible? . Bioscience
611		http://www.actionbioscience.org/newfrontiers/sticklen.html (2010).
612	46.	Klarskov K, Piens K, Stahlberg J, H PB, Van Beeumen J and Claeyssens M,
613		Cellobiohydrolase I from Trichoderma reesei: Identification of an active-site nucleophile
614		and additional information on sequence including the glycosylation pattern of the core
615		protein. Carbohydrate Research 304 :143-154 (1997).
616		
617		
-		

618 619

620 **Figure 1**. Schematic drawing of the plasmid vectors E1, CBH I and cellobiase (bg1A). Plasmids

621 include pE1ER: Plasmid containing the *A. cellulolyticus* E1¹³ targeted into ER regulated by 622 green tissue specific rubisco promoter; pDM302: plasmid containing the bar selectable marker

623 gene regulated by rice actin promoter and introns; pCBH-IApo: Plasmid containing the *T. reesei*

624 CBH I⁴⁶ targeted into apoplast, and six histidine tags were included to purify the protein to send

625 to our industry partner; pBG1Vac: Plasmid containing the *Butyrivibrio fibrisolvens* cellobiase ¹⁸

targeted into vacuole; and pGreen ¹⁹: plasmid containing the bar and the FLOWERING LOCUS

627 C (FLC) genes, each regulated by 35S promoter.

628

Figure 2. Molecular analyses of E1, CBH I and cellobiase. In all experiments, Wt means wild-

type untransformed control plant leaf. (a) produced E1 Northern blot analysis (top. Tob. E1; E1

heterologous tobacco) and Western blot analysis (bottom) with three different purified E1

concentrations (100ng, 50ng, 25ng) as compared to the heterologous E1. (b) CBH I PCR

635 analysis (top) and Northern blot analysis (bottom). (c) Tobacco heterologous CBH I Northern

blot analysis (top) and Western blot analysis with 6xhistidine antibody (bottom). (d) cellobiase

637 PCR analysis (top) and Northern blot analysis (bottom).

640 Figure 3. Heterologous E1, CBH I and cellobiase enzymatic activity assays. (a) Corn

641 heterologous E1 activity. (b) Corn heterologous CBH I activity. (c) Tobacco heterologous CBH I

activity. (d) Corn heterologous cellobiase activity. TSP means plant total soluble protein or crude

643 protein extract. Mean \pm standard deviation (P<0.05, n=3).

- 647 Figure 4. Glucose conversion assays of heterologous E1 using CMC (a) and cellobiase using
- cellobiose (b) as substrate. Mean \pm standard deviation (P<0.05, n=3). 648
- Note: Figure 4b is a modified version of Figure 5 of a previous article.¹⁰ 649

653 Figure 5. Heterologous multicellulase ratio optimization. (a) E1 and CBH I ratio optimization

using CMC substrate incubated at 50 °C and 90 rpm shaking for 72 h. In this graph, plant E1 654

means tobacco-produced heterologous E1 used as positive control. Commercial NovozvmeTM 655

656 188 (A. niger cellobiase) was added to heterologous E1 or E1:CBH I crude protein mixtures

657 because accumulation of cellobiose inhibits the conversion of CMC into fermentable sugars; (b)

658

SCP means commercial Spezyme CP (a mixture of endo and exo-glucanase) mixed with commercial β -glucosidase (NovozymeTM 188). The E1:CBH I:Cellobiase ratio optimization was 659

performed via DNS assay using AFEX-pretreated corn stover representing 1% glucan as 660

described in the methods section 661

662	Table 1. Estimation of heterologous cellulase productions in dry mature corn stover versus corn
663	silage.

Heterologous Cellulase	Transgenic lines	% cellulase in crude protein extract	Approximate Heterologous Cellulases (g) / ton dry mature corn stover	Approximate Heterologous Cellulases (g) / ton corn silage
	5a	2.0	400	752
	19e	0.2	33	75.2
E 1	21	0.2	33	75.2
	21c	0.3	67	112.8
	21g	0.7	133	263.2
	3-1	3.11	622	1165.6
	9-18	2.2	436	827.2
Cellobiase	9-2	1.8	368	676.8
	2-1	1.6	314	601.6
	10-24	0.9	182	338.4