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In the quest for alternatives to microbial cellulase mix production: Corn stover-produced 
heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable 
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BACKGROUND: Production of cellulosic ethanol is still expensive as compared to corn (maize) 
grain ethanol due to the high costs in bulk production of microbial cellulases. At least three 
cellulases including endo-cellulase, exo-cellulase and cellobiase are needed to convert cellulosic 
biomass into fermentable sugars. All these cellulases could be self-produced within cells of 
transgenic bio-energy crops. We have recently reported the production of heterologous 
Acidothermus cellulolyticus (E1) endo-cellulase in endoplasmic reticulum and mitochondria of 
green tissues of transgenic corn plants, and confirmed that the heterologous E1 converts cellulose 
into fermentable sugars. 
 
RESULTS: Biologically active A. cellulolyticus E1, Trichoderma reesei 1,4-β-
cellobiohydrolases I (CBH I) exo-cellulase and bovine rumen Butyrivibrio fibrisolvens cellobiase 
were expressed in corn plant endoplasmic reticulum (ER), apoplast (cell wall areas) and vacuole 
respectively. Our results show that the ratio of 1:4:1 (E1:CBH I:Cellobiase) crude heterologous 
cellulases is ideal for converting Ammonia Fiber Explosion (AFEX) pretreated corn stover into 
fermentable sugars. 
 
CONCLUSIONS: Corn plants that express all three biologically active heterologous cellulases 
within their cellulosic biomass to facilitate conversion of pretreated corn stover into fermentable 
sugars is a step forward in the quest for alternatives to the present microbial cellulase mix 
production for cellulosic biofuels. 

 
Keywords: E1, endo-cellulase; CBH I, 1,4-β-cellobiohydrolases I; cellobiase; corn; maize; 
fermentable sugar; biofuels; AFEX.  
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With the 2003 awakening report that the United States held 3% of the world's petroleum 

reserves, and consumed 25% of the world's petroleum consumption 

(http://www1.eere.energy.gov/vehiclesandfuels/facts/2004/fcvt_fotw336.html), the U.S. 

government urged the agricultural and petrochemical industries to find and implement biofuels 

as alternatives to fossil fuels to reduce the nation’s dependence on foreign oil. A report resulted 

in the 2005 publication of the USDA-DOE documents the availability of U.S. lands for annual 

production of one billion tons of lignocellulosic matter in order to replace 30% of the foreign oil 

import to the U.S. by 2030 

(http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf).  

Plant lignocellulosic biofuels are considered as excellent alternative to petroleum fuel, 

gasoline. Plants annually produce 180 billion tons of cellulose at the global level,1 and as the 

most abundant biopolymer on earth, cellulose is indeed the most promising renewable energy 

source for biofuels production. 

Despite the great potential of lignocellulosic biofuels, their production costs heavily 

depend on how cheap cellulase enzymes are produced and how efficiently lignocellulosic 

materials are broken down. At present, cellulase enzymes are produced in microbial bioreactors 

at approximate costs of $1.00 per gallon of ethanol 2 which impedes the commercialization of 

cellulosic bioethanol. Therefore, the production costs of the microbially-produced commercial 

cellulases need to be further reduced in order to make the cellulosic biofuel technology 

competitive with corn grain ethanol.  

At least three different cellulase enzymes are required to break down plant cell wall 

cellulose for cellulosic biofuel production. The plant secondary cell walls are mainly composed 

of crystalline cellulose, varying mixtures of hemicellulose and lignin. Pretreatment of the 

http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf
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lignocellulosic biomass is necessary prior to enzymatic hydrolysis because the access of enzymes 

to cellulose is restricted by lignin-hemicellulose interference. Pretreatments (e.g., AFEX) break 

the lignin seal, disrupt the crystalline structure of macro- and microfibrils and increase the pore 

volume and available surface area. These physicochemical changes allow the enzymes to 

penetrate into the lignocellulosic fibers which render them amenable to enzymatic hydrolysis.
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 The three cellulases include endo- and exo-cellulases and cellobiases. The endo-69 

cellulases such as β-1,4-glucanases (e.g., Cel5a; E1; EC 3.2.1.4, Accession no. U33212) 70 

randomly cleave β-1,4-glucan along the polysaccharide chain and produce a new reducing and 71 

non-reducing end of the cellulose strand. After the reaction of an endo-cellulase, the smaller 72 

glucan chains are further hydrolyzed by exo-cellulases such as 1,4-β-cellobiohydrolases I or 73 

CBH I (Cel7a; EC 3.2.1.91. Accession no. E00389) which cleaves from the reducing ends, or the 74 

CBH II (Cel6a; EC 3.2.1.21, Accession no. M55080) which cleaves from the non-reducing ends 75 

of cellulose chains.5  76 

 The hydrolysis of cellulose due to synergistic action of endo- and exo- cellulases results 77 

in dimer glucose chains or cellobiose. The cellobiose can be further converted into the monomer 78 

glucose by cellobiases such as β-1,4-glucosidase 1 (EC 3.2.1.21, Accession no. M31120). The β-79 

1,4-glucosidase 1  has been grouped into two glycosyl hydrolase sub-families, sub-family A and 80 

sub-family B. Sub-family A includes plant and non-rumen prokaryotic cellobiases. Sub-family B 81 

includes fungal cellobiases such as the one produced in T. reesei, Aspergillus niger, and A. 82 

aculeatus,6, 7 and rumen bacteria such as the anaerobic bovine symbiotic Butyrivibrio fibrisolvens 83 

used in our studies. Cellobiases also act as cellulase inducers and transcriptional regulators.8 84 

Cellobiase is only needed at about 100-1000 times lower amounts than endo and exo-cellulases 85 

for hydrolysis of cellulose.9 86 
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To reduce the costs of cellulases, we produced biologically active Acidothermus 

cellulolyticus E1, Trichoderma reesei CBH I, and bovine rumen Butyrivibrio fibrisolvens 

cellobiase in three different sub-cellular compartments of three different sets of transgenic corn 

plants. Then, we extracted plant-produced crude proteins containing each heterologous cellulase, 

mixed them together and added the mixture in certain ratios to Ammonia Fiber Explosion 

(AFEX) pretreated corn stover.
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10 We found that under our conditions, certain ratio of the 

heterologous multicellulase mix was the most effective for cellulose conversion into glucose. In 

this research, we accomplish production of all three heterologous cellulases in corn plants in a 

cost-effective manner and suggest the feasible application of the plant-produced heterologous 

multicellulase mix in biofuel industries. 

Previously, we found the composition of corn stover to include 34.4% glucan and 22.8% 

xylan.11 Theoretically, production of a few heterologous cellulases should have no effect on corn 

stover composition. Furthermore, the composition of corn stover is nearly identical in AFEX-

pretreated and untreated corn stover.4, 12 

 

 

MATERIALS AND METHODS 

Co-transformation vectors 

There are five transformation vectors included in our experiments (Fig. 1). The pE1ER 

contains the A. cellulolyticus E1 gene 13 included in ImpactVectorTM. This vector has been 

designed based on the green-specific Rubisco promoter and the signal peptide sequences to 

target E1 into the ER as described.14  
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The pDM302 (Accession no. X17220) contains the bar gene encoding phosphinothricin 109 

acetyltransferase (PAT) as a selectable marker. The gene regulated by the rice actin 1 (Act1) 110 

promoter and nos terminator.15 111 
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The pApo is a binary vector targeting the CBH I gene 16 into apoplast. This vector was 

constructed using the T. reesei CBH I gene. The gene was obtained from digestion of the 

pMZ766-CBH I with XbaI enzyme and the released CBH I gene cassette was then ligated into 

pCAMBIA3303. This vector contains the CaMV 35S promoter, the tobacco mosaic virus 

translational enhancer (Ω), the tobacco pathogenesis-related protein 1a (Pr1a) signal peptide for 

apoplast targeting, the six histidines, enterokinase recognition site (EK) and the polyadenylation 

signal from nopaline synthase gene (3’ nos). 

The pBGVac, or pUC1813,17 contains the bglA gene 18 encoding B. fibrisolvens H17c β-

glucosidase, the ER leading sequence, the vacuole-targeting signal peptide (VT), and the CaMV 

35S promoter and terminator. 

The pGreen 19  is a binary vector containing the bar selectable marker gene regulated by 

the CaMV 35S promoter and nos terminator, and the FLOWERING LOCUS C (FLC) gene 

regulated by the CaMV 35S promoter and nos terminator. This vector also contains T-DNA left 

and right borders and carries the nptII gene for bacterial resistance to Kanamycin. 

 

Corn genetic transformation and production of transgenic progenies 

Highly proliferating, immature-embryo-derived Hi II embryogenic corn calli were co-

bombarded via the BiolisticTM gun with a 1:1 ratio of the pE1ER, pCBH-IApo or pBGVac, and 

either the pDM302 15 or pGreen constructs 19 containing the bar herbicide resistance selectable 

marker gene. In vitro culture, phosphinothricin (PPT)  resistant callus was selected based on our 
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standard procedures 20. The herbicide resistant plants were acclimated in a growth chamber, and 

then transferred to a greenhouse until maturity. Fertile first generation transgenic plants were 

self-pollinated and seeds were harvested 35-45 days after pollination, when they were dry. 
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Transgene integration and transcription analyses 

The PCR analyses were performed on both first (T0) and second (T1) generation 

transgenic plants to confirm the presence of transgenes. Northern blotting was performed to 

confirm transcription of transgenes. Total RNA was isolated from putatively transgenic and 

wild-type control untransformed plants using Trizol reagent following the manufacturer 

instructions (Invitrogen, CA). RNA gel blot analysis was carried out following modifications of 

our previous procedure. 20 

 
Preparation of crude plant protein extracts and western blotting  

Proteins were extracted from wild-type control untransformed and T0 E1 transgenic leaf 

tissues as described before. 14 For crude protein extraction from T0 CBH I transgenic corn, 100 

mg of leaf disks was ground in 4 volumes of ice-cold extraction buffer. The extract buffer 

contained 80 mM MES, pH 5.5, 10 mM 2-mercaptoethanol, 10 mM EDTA 0.1% sodium N-

lauroylsarcosinate, 0.1% Triton X-100, 1 mM PMSF, 10 M leupeptin, and 1 g/ml each of 

aprotinin, pepstatin A, and chymostatin. The supernatant from the crude extract which was 

centrifuged at 15,000 g and 4 oC for 10 min was quantified using Bradford method. 21 

The Invitrogen NuPAGE® Bis-Tris Discontinuous Buffer System with a 10% 

NuPAGE® Novex Bis-Tris Pre-Cast Gel was used for Western blotting of T0 transgenic plants 

according to the manufacturer instruction (Invitrogen, CA). 
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Biological activities of heterologous E1, CBH I and cellobiase 156 
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The biological activities of heterologous E1 and CBH I were measured in T0 transgenic 

plants following our previous research.2 Briefly, 10 μl of a set of diluted crude protein containing 

each heterologous cellulase extract was mixed with 100 μl reaction buffer (50 mM sodium 

acetate pH 5.0 containing 1.0 mM of substrate MUC, 4-methylumbelliferone β-D-cellobioside) 

in 96-well plates. Plates were covered and incubated at 65 °C in the dark for 30 min. Then, 100 

μl of stop buffer (100 mM glycine, pH 10.3) was added and the fluorophore 4-

methylumbelliferone (MU; the product of E1 or CBH I hydrolysis of the substrate MUC) was 

measured by reading the fluorescence at 465 nm using SPECTRAmax M2 device (Molecular 

Devices Inc., CA) at of 360 nm excitation wavelength. After subtracting the background, the 

activity of each sample was calculated using a MU standard curve which contributed to 

deactivated enzyme extract.   

The biological activity of heterologous cellobiase of T0 plants was measured via the 

modification of our standard procedure,14 measuring the hydrolysis of p-nitro-phenyl-β-D-

glucopyranoside (pNPβG), The incubation mixture included 2 mM pNPβG, 50 mM sodium 

phosphate buffer (pH 6.5) and 30 μl crude protein in a total volume of 100 μl. The reaction was 

conducted at 40°C for 15 min and stopped by the addition of 300 μl 1.0 M Na2CO3. The amount 

of p-nitrophenol (pNP) released was determined using a spectrophotometer via measuring the 

absorbance of the solution at 415 nm. Standard solutions between 0-100 nmol pNP were also 

included.  

 

Percent heterologous E1 and cellobiase in plant crude protein extracts 
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The percentage of heterologous E1 in crude protein extract was measured in T0 

transgenic plants based on densitometry analysis of Western blot X-ray film. The percentages of 

the heterologous cellobiase in crude protein extract was measured via the standard curve 

representing the biological activities of different dilutions of the purified A. niger cellobiase 
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22 

(80% pure; isolated from NovozymeTM 188).   

 

Estimation of heterologous cellulases per ton of dry mature corn stover versus corn silage 

Based on their plant crude protein extracts, two reports were used to estimate the amount 

of heterologous cellulases per ton of dry mature corn stover versus corn silage. The first report is 

from the Department of Animal Science at North Carolina State University 

(http://www.agr.state.nc.us/drought/documents/InterpretingForageAnalysisReportsforcornstalks.

pdf). We calculated the amount of heterologous cellulases based on this report showing that 5% 

of dry mature corn stover is proteins, and approximately 40 % of these proteins are water soluble 

(total soluble proteins). The second report is from Manitoba Agriculture, Food and Rural 

Initiatives (http://www.gov.mb.ca/agriculture/crops/specialcrops/bii01s02.html) which indicates 

that about 9.4 % of corn silage is proteins.  

 

Optimization of ratio of E1 to CBH I for maximizing CMC conversion  

Different ratios of E1 to CBH I in T0 transgenic plants were used in order to find an ideal 

ratio for carboxymethyl cellulose (CMC) conversion. The enzymatic hydrolysis experiment took 

place in a vial containing 1% CMC (Sigma-Aldrich, St Louis, MO) substrate in a 15 ml reaction 

buffer (7.5 ml of 100 mM sodium citrate buffer, pH 4.8). In addition, 60 μl (600 μg) tetracycline 

and 45 μl (450 μg) cycloheximide were added to each vial to prevent the growth of 

http://www.gov.mb.ca/agriculture/crops/specialcrops/bii01s02.html
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microorganisms during incubation and hydrolysis reaction. The reaction was supplemented with 

A. niger cellobiase (Novozyme
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TM 188) to convert the cellobiose to glucose. Distilled water was 

added to bring the total volume in each vial to 15 ml. All reactions were performed in duplicate 

to test reproducibility. The hydrolysis reaction was carried out at 50 °C with a shaker speed of 90 

rpm. About 1 ml of each sample was taken out from the hydrolysis reaction after 72 h of 

hydrolysis, and filtered using a 0.2 µm syringe filter and kept frozen. The amount of glucose 

produced in the enzyme blank and substrate blank were subtracted from the respective 

hydrolyzed glucose levels.  The equivalent glucose concentration was quantified using Glucose 

Analyzer (YSI 2700 SELECT™ Biochemistry Analyzer, Yellow Springs, OH) using glucose as 

the standard.   

 

Optimization of ratio of E1 to CBH I to cellobiase for maximizing AFEX pretreated corn stover 
conversion  
 

The DNS assay was employed to quantify the reducing sugar produced as the result of 

enzymatic hydrolysis, determining the optimum ratio of all three heterologous enzymes produced 

in T0 transgenic plants on conversion of AFEX pretreated corn stover into fermentable sugars.23  

DNS is a colorimetric reagent used in standard assays to detect reducing sugars. For conversion, 

1% glucan loading equivalent AFEX pretreated corn stover was hydrolyzed using the microplate 

hydrolysis conditions as described elsewhere.11 Also, different ratios of E1:CBH I:Cellobiase 

were produced by diluting of crude proteins of different transgenic plants. Each of the different 

crude cellulase mix ratios were added to 1% glucan loading equivalent AFEX pretreated corn 

stover in microplates. After hydrolysis, 50 μl sample supernatant from each vial was taken and 

placed in each well of a 96 well plate, 100 μl DNS was added to each well, and the color was 

developed at 100°C for 30 min. 11, 22 Heat resistance sticky film lid was used to cover the 96 well 
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plate prior to heating to avoid evaporation.  The reading was done with 100 μl sub-samples using 

a UV spectrophotometer at 540 nm. The readings were compared to glucose standards, and the 

actual percent AFEX pretreated corn stover conversion into glucose equivalents was calculated. 

In these assays, the enzyme and substrate blanks were included, and all reactions were done in 

triplicate to measure accuracy. 
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T0 transgenic E1, CBH I and cellobiose were self bred for production of T1 plants, and 

seeds were collected for further analyses. PCR analyses were performed to confirm the transfer 

of each transgene into its next generation.  

 

RESULTS 

Plant genetic engineering followed by confirmation of transgene integration and expression 
 

Herbicide resistant transgenic corn plants were produced from immature embryo-derived 

cell lines biolistically co-bombarded with each of the three constructs (pE1ER, pCBH-IApo, and 

pBG1Vac) containing the cellulase genes and one of the two constructs containing the bar gene 

(pDM302 and pGreen). We also produced several CBH I independent transgenic tobacco plants 

via the Agrobacterium transformation system because most independent transgenic CBH I corn 

lines died prior to the completion of our studies due to our greenhouse conditions. Polymerase 

chain reaction (PCR) analysis of herbicide resistant plants confirmed the presence of E1 gene in 

plants (data not shown), and Northern blotting confirmed the E1 transcription (Fig. 2a) in leaves 

of PCR positive plants. The production of heterologous E1 protein was confirmed via Western 

blotting using monoclonal E1 antibody (Fig. 2a).  

A total of 30 mature independent CBH I transgenic corn lines were produced. Prior to 

death of some of these plants, PCR analysis of CBH I confirmed the presence and Northern 
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blotting confirmed the transcription of CBH I transgene in corn plants (Fig. 2b). In addition, PCR 

confirmed the presence, and Western blotting confirmed the production of heterologous CBH I 

protein in tobacco plants (Fig. 2c).   
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A total of 35 mature independent corn cellobiase transgenic lines were produced. PCR 

analysis confirmed the presence, and Northern blotting confirmed the transcription of cellobiase 

transgene in corn plants (Fig. 1d).  

 

Biological activities of heterologous cellulases  

Biological activity of each of the heterologous cellulases is shown in Fig. 3. In Fig. 3a, 

enzymatic activity of E1 was measured in leaves of transgenic corn plants. One unit of E1 

activity is defined by measuring the amount of 4MU released from reaction of one mg of plant 

total soluble protein (TSP or crude protein extract) added into one mM of 4MUC in one minute. 

Fig. 3a confirms no activity in the wild-type control leaf while leaves from different independent 

transgenic E1 lines show different levels of activities, with line 19e showing the highest (205 

nmol 4MU/mg TSP/min). 

Enzymatic activity of CBH I was measured in leaves of transgenic corn and transgenic 

tobacco plants (Fig. 3b and 3c). In Fig. 3b, one unit of CBH I activity is defined by measuring 

the amount of 4MU released from reaction of one mg of crude protein added into one mM of 

4MUC in one hour. Although wild-type control plant leaf shows a small amount of CBH I 

activity, transgenic corn leaves (61a and 61b) show 1.5 to 2.5 times greater activity as compared 

to their wild-type control plant leaf.  In Fig. 3c, we used one unit of CBH I activity as defined by 

measuring the amount of 4MU released from reaction of one picomole (pmol) of crude protein 

added into one mM of 4MUC in one hour. Transgenic tobacco leaf (line 1-3) shows 25 times 
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greater activity than its wild-type control tobacco plant leaf (Fig. 3c). Overall, the activity of 

heterologous CBH I was much lower in transgenic corn than transgenic tobacco.  
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In Fig. 3d, enzymatic activity of cellobiase was measured in leaves of transgenic corn. In 

Fig. 3d, one unit of cellobiase activity is defined by measuring the amount of pNP released from 

reaction of one mg of crude protein added into one mM of pNPβG in one minute. Fig. 3d 

confirms that the wild-type control plant leaf had no activity while different independent 

transgenic corn cellobiase lines show different levels of activities, with line 3-1 showing the 

highest (5.475nmol pNPU/min).  

We must indicate that the units for measuring the tobacco (Fig. 3c) and corn (Fig. 3b) 

heterologous CBH I are very different. While corn heterologous CBH I was measured in nmol, 

tobacco heterologous CBH I was measured in pmol due to its low activity. 

 

 Carboxymethyl cellulose (CMC) conversion using heterologous cellulases 

CMC substrate conversion into low molecular weight reducing sugars was performed 

using the corn crude protein containing heterologous E1 or cellobiase. Fig. 4a shows that the four 

corn E1 transgenic lines tested have significantly higher CMC conversion as compared to the 

wild-type control corn plant. Fig. 4a shows that the crude protein containing corn-produced 

heterologous E1 tested displays higher CMC conversion capacities, and Fig. 4b shows that the 

crude protein containing heterologous cellobiase displays higher cellobiose conversion as 

compared to the wild-type control crude protein.  

 
 Multicellulase enzyme mix ratio optimization for CMC and AFEX-pretreated corn stover 
conversion  
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It has been well documented that different cellulases work together synergistically to 

decrystallize and hydrolyze cellulose, and also much more CBH I enzyme is required for optimal 

conversion.  Therefore, different ratios of E1:CBH I (1:4, 1:10 and 1:15) based on total protein 

concentration were used in the hydrolytic conversion of soluble cellulose CMC to glucose. The 

total proteins were extracted from E1 and CBH I transgenic tobacco plants, respectively. Fig. 5a 

shows that the ratio of 1:4 of E1:CBH I was the most effective ratio in cellulose-to-glucose 

conversion. 
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The ultimate goal of producing hydrolytic enzymes in plants is to use them in actual 

cellulosic biomass conversion. Therefore, various combinations of corn-produced E1, CBH I and 

cellobiase enzyme isolates were tested on AFEX pretreated corn stover representing 1% glucan 

in 24 h hydrolysis reaction. Fig. 5b shows the amount of reducing sugars estimated by 

dinitrosalicylic acid (DNS) assay, and the best ratio of E1:CBH I:cellobiase tested appears to be 

a 1:4:1, with release of nearly 1 g/L glucose equivalents. Although the biological activities of 

CBH I was relatively low, the conversion activity of the three plant-produced crude heterologous 

enzymes at 1:4:1 ratio shows similar conversion effectiveness as compared to the commercial 

enzyme Spezyme CP (SCP), meaning that the heterologous enzyme mixtures have the potential 

to substitute or at least be used as supplements to commercially available cellulase mixtures.  

Since the heterologous multicellulase enzyme mix shows efficient conversion of 

pretreated corn stover, it is worthwhile to have estimations of heterologous cellulase productions 

in mature corn stover dry matter versus corn silage. Table 1 represents the amount of 

heterologous cellulases which could have been produced per ton dry mature corn stover versus 

corn silage. 
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Using densitometry analysis, the heterologous E1 protein production was estimated to be 

up to 2% of transgenic corn leaf crude protein. Based on our calculations, the heterologous E1 

could be produced up to 400 grams per ton of dry mature corn stover and 752 grams per ton of 

corn silage.  
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The heterologous cellobiase protein produced was estimated up to 3.11% of transgenic 

plant leaf crude protein extract. Based on our calculations, the heterologous cellobiase could be 

produced up to 622 grams per ton of dry mature corn stover and at 1165 grams per ton on corn 

silage. 

 

DISCUSSION 

Corn-produced heterologous multi-cellulases as a value-added biobased product  

The demands for cellulosic biofuels as petroleum alternatives have surged within last few 

decades. Despite efforts made to date to increase the productivity of cellulase-producing 

microbes through genetic engineering, the high costs of microbial cellulase enzyme production 

still impede the commercialization of cellulosic ethanol industries. The production of microbial 

E1and CBH I in different plants have already been reported 3, and human and corn cellobiase 

genes have been expressed in tobacco. 24, 25 

A. cellulolyticus E1 is thermostable which helps it to endure the relatively high 

temperature of pretreatment processes (example; AFEX pretreatment), and shows high specific 

affinity to cellulose derivatives such as CMC 26 which was used in our studies for E1 enzymatic 

activity tests. 

In this report, we have targeted the A. cellulolyticus E1 into corn ER. Our recent report 14 

indicated that the ER targeting is suitable for the accumulation of heterologous E1 because of the 
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fact that ER is the first site for protein synthesis and is known to contain a series of molecular 

chaperones such as the ER Luminal Binding Protein (BiP) needed during protein folding, 

assembly and preventing the transport of immature protein molecules.
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27-29 

We have targeted T. reesei CBH I into corn apoplast because this sub-cellular 

compartment is a free diffusional space outside of the plasma membrane meaning that it has the 

ability to accumulate large quantities of foreign proteins. The filamentous fungus T. reesei is 

considered to be the most efficient cell wall degrading microbe, encoding for only 10 cellulolytic 

enzymes including cellobiohydrolases. 30, 31 About 80-85% (40 g/L) of genetically modified T. 

reesei extracellular proteins is cellobiohydrolases, among which 50-60% are CBH I 32.  In fact, 

due to its importance, CBH I enzyme quantity has been increased up to 1.5 fold via genetic 

engineering of T. reesei.5  

We have targeted the third heterologous cellulase, cellobiase, into corn vacuoles because 

vacuoles occupy 30-90% (depending on plant maturity) of the cell volume, and therefore more 

heterologous proteins may accumulate in mature transgenic plants. We selected the cellobiase 

gene from bovine rumen B. fibrisolvens H17c 18 because its enzyme assists in enabling the 

conversion of cellulosic matter of silage feed into energy in rumen. 

 

Using biologically active crude heterologous cellulases for saccharifying cellulosic biomass  

It would have been ideal to use mixtures of pure E1, CBH I and cellobiase as positive 

controls in Fig. 3. However, we only had pure E1 available in our laboratory. Fig. 3 shows the 

biological activities of heterologous E1, CBH I and cellobiase. We used commercial pure 

microbial E1 (provided by National Renewable Energy Laboratory; NREL) as positive control in 
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Fig. 3a. We also used a commercially available pure E1- CBH I mixture (SCP) and an impure 

commercial microbial cellobiase as positive control (Fig. 5b). 
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Corn plants contain exo-glucanase genes and therefore exhibit background exo-glucanase 

activities  33. It is also possible that wild-type tobacco plants have exo-cellulase activities. These 

might be the reasons that the wild-type corn (Fig. 3b) and tobacco (Fig. 3c) plants have shown 

some exo-glucanase biological activities. Also, corn contains endo-glucanase 34 and β-

glucosidase (cellobiase) genes.25 The reason that the wild-type corn plants did not show any 

biological activity of E1 (Fig. 3a) or cellobiase (Fig. 3d) might be because either these two genes 

were not on to produce these enzymes when we harvested the plant leaves for analysis, or the 

amount of activity of these endogenous cellulases were not sufficient for detection. The activity 

assay for detecting E1 and CBH I were the same.  

In Fig. 3a, we show the biological activity of E1 in nmol 4MU/mg TSP per minute. 

However, in Fig. 3b, we show the biological activity of E1 in nmol 4MU/mg TSP per hour 

because the heterologous E1 had much more activity as compared to the heterologous CBH I, 

and therefore less time is needed for the analysis of the heterologous E1. For the activity assay, 

we used EDTA in our extraction buffer for production of E1 and CBH I crude proteins. 

Considering that EDTA is known to partially inhibit the biological activities of cellulases,35 the 

biological activity of heterologous cellulases produced in plants in our studies might have been 

much more, should we have used an alternative to EDTA in our extraction buffer.  

To calculate the biological activity of each heterologous cellulase in unit, we used equal 

amount of crude plant proteins, substrates and incubation time. There is an inconsistency 

between data presented in Table 1 and Fig. 3. In Fig. 3a, the 21g column (the column related to 

crude protein of independent transgenic corn line) should have been higher than the 19e column 
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because we used higher percentage of E1 in 21g.  This inconsistency might be due to the fact that 

non-measureable factors such as expansins and other cell wall loosening proteins in crude 

protein extracts of different independent transgenic lines might have been different in 21g as 

compared to 19e.  
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Crude heterologous cellulase mix ratio 

At present, a naturally produced mixture of endo-glucanase, exo-glucanase and cellobiase 

is extracted from microbes and added to pretreated corn stover for enzymatic hydrolysis. When 

NREL mixed pure microbial E1 and CBH I and added the mixture to the pretreated corn stover 

in different ratios, a ratio of 1:17 (E1-CBH I) resulted in highest level of fermentable sugars 

produced (communication with Dr. Michael Himmel of NREL). Therefore, one of our research 

goals was to find the optimal ratio of plant-produced heterologous cellulases on AFEX-

pretreated corn stover for production of fermentable sugars.  

We learned that a ratio of 1:4 of the crude E1 to CBH I was needed for production of the 

highest level of glucose. Crude cellulases are advantageous over using purified cellulases 

because plant crude proteins contain other useful molecules that cause cell wall loosening. For 

example, expansins 36-38 break hydrogen bonding between cellulose microfibrils or between 

cellulose and other cell wall polysaccharides without having any hydrolytic activity.39 Both the 

amino acid sequence and the role of plant expansins are similar to those of T. reesei swollenin 

which is reported to weaken filter paper (cellulose) and disrupt other cellulosic materials such as 

cotton fibers. 40 

In our studies, we produced three different cellulases in three sets of independent 

transgenic plants, and then mixed all three plant crude proteins in a ratio of 1:4:1 (E1:CBH I: 
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cellobiase) for conversion of AFEX-pretreated corn stover into fermentable sugars because this 

ratio was most effective under our experimental conditions.  
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Field level estimation of corn-produced heterologous cellulases 

We extrapolated the amount of heterologous cellulases that could be produced in the field 

per ton of mature dry corn stover 

(http://www1.eere.energy.gov/biomass/pdfs/Biomass%202007%20Overview_Web.pdf) versus 

corn silage (http://www.gov.mb.ca/agriculture/crops/specialcrops/bii01s02.html) based on data 

produced from our greenhouse studies (Table 1). With these calculations, transgenic corn 

reported here could have produced up to 400 grams of E1 and 622 grams of cellobiase per ton of 

dry mature corn stover (third column) and up to 752 grams of E1and 1165.6 grams of 

heterologous cellobiase per ton of corn silage (fourth column).  

 

Single cellulases gene transfer versus gene stacking 

We chose to produce each cellulase enzyme in one set of transgenic corn plants instead of 

using transgene stacking because we wished to assure the possible effect of each transgene on 

plant health. We have started cross-breeding of these cellulase producing corn plants to combine 

transgenes (to be reported elsewhere). Gene stacking in transgenic plants might be a good option, 

should one be able to control the ratio of production of heterologous cellulases produced in the 

same plant or to balance the ratio by adding certain cellulases. The idea of gene stacking comes 

from bacterial cellulosome. Cellulosome is a large extracellular enzyme complex in certain 

anaerobic bacteria which break down cellulose. Unlike our transgenic plants that carry different 

heterologous cellulases in different sub-cellular compartments, cellulosomes are produced in 

http://www.gov.mb.ca/agriculture/crops/specialcrops/bii01s02.html
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microbial cytosol as bacteria do not contain sub-cellular compartments. Cellulosome contains 

nine different cellulases on the same structural base which is a “scaffolding protein” containing 

cellulose binding domains. 
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41 The idea of assembling several cellulases as gene stacking on a 

structural base could be applicable to crop plants should the optimum ratio be achieved.  

Expression of multi-gene assembly also works when genes are translationally fused and 

transferred to chloroplast genome. Plant chloroplasts can be genetically engineered with several 

coding sequences controlled only under one promoter, a phenomenon that cannot occur in 

nuclear transgenesis as presented here. The authors hope that the problems associated with 

chloroplast transgenesis of cereal crops including corn will soon be resolved, because 

translationally fused cellulases might be even more efficient for cell wall degradation than the 

heterologous cellulase mix produced in our studies. For example, when the fusion cellulase 

(CelYZ) produced from fusion of artificial heterologous endo 1,4-glucanase (CelZ) and exo1,4-

glucanase (CelY) genes, regulated by tetA promoter/operator was successfully produced in 

Escherichia coli, the hydrolytic activity of such fusion protein was three to four fold higher than 

the sum of the activity of the combined CelZ and CelY due to the intra-molecular synergism of 

the fused cellulases in hydrolysis of crystalline cellulosic matter. 42 This means that it would 

have been more beneficial, should we were able to produce the heterologous fused cellulase mix 

in corn chloroplasts, extract the fusion cellulase, and add to pretreated lignocellulosic matter for 

enzymatic hydrolysis, a cocktail of 12 heterologous hydrolytic enzymes were produced in 

tobacco via chloroplast transgenesis. 43 

 

Quest for alternatives to production of microbial cellulases 
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According to a National Research Council report of the U.S. National Academies 44 the 

chloroplast transgenesis platform has the major advantages of (1) relatively higher 

heterologous protein production, (2) reducing or preventing of transgene flow via pollen grain 

transfer in most flowering plants due to maternal inheritance of chloroplast genome, and (3) 

plastid genome is normally transferred via heterologous recombination allowing the site-

specific insertion of transgenes in chloroplast genome, helping with reducing of “unintended 

phenotypic effects of transgenes”.  
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The nuclear transgenesis presented here and that of chloroplast transgenesis for 

production of multiple heterologous cellulases in tobacco 43 are expected to advance the field of 

cellulosic biofuels by reducing the costs associated with production of cellulases in microbial 

systems. This is because plants use the free solar energy for protein production while microbial 

bioreactors require chemical energy inputs.  

The research presented here is indeed a step forward in the quest for commercialization 

of biomass crop-produced heterologous cellulases as an alternative or supplement to current 

microbial-based cellulase production for cellulosic biofuels.45 
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Figure 1. Schematic drawing of the plasmid vectors E1, CBH I and cellobiase (bg1A). Plasmids 
include pE1ER: Plasmid containing the A. cellulolyticus E1 13 targeted into ER regulated by 
green tissue specific rubisco promoter; pDM302: plasmid containing the bar selectable marker 
gene regulated by rice actin promoter and introns; pCBH-IApo: Plasmid containing the T. reesei 
CBH I 46 targeted into apoplast, and six histidine tags were included to purify the protein to send 
to our industry partner; pBG1Vac: Plasmid containing the Butyrivibrio fibrisolvens cellobiase 18 
targeted into vacuole; and pGreen 19: plasmid containing the bar and the FLOWERING LOCUS 
C (FLC) genes, each regulated by 35S promoter.  
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Figure 2. Molecular analyses of E1, CBH I and cellobiase. In all experiments, Wt means wild-
type untransformed control plant leaf. (a)  produced E1 Northern blot analysis (top. Tob. E1; E1 
heterologous tobacco) and Western blot analysis (bottom) with three different purified E1 
concentrations (100ng, 50ng, 25ng) as compared to the heterologous E1. (b)  CBH I PCR 
analysis (top) and Northern blot analysis (bottom). (c) Tobacco heterologous CBH I Northern 
blot analysis (top) and Western blot analysis with 6xhistidine antibody (bottom). (d)  cellobiase 
PCR analysis (top) and Northern blot analysis (bottom).  
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Figure 3. Heterologous E1, CBH I and cellobiase enzymatic activity assays. (a) Corn 
heterologous E1 activity. (b) Corn heterologous CBH I activity. (c) Tobacco heterologous CBH I 
activity. (d) Corn heterologous cellobiase activity. TSP means plant total soluble protein or crude 
protein extract. Mean ± standard deviation (P<0.05, n=3).  



In press, 2011 29

644 (a)                                                        (b) 

 645 
646 
647 
648 
649 

 
Figure 4. Glucose conversion assays of heterologous E1 using CMC (a) and cellobiase using 
cellobiose (b) as substrate. Mean ± standard deviation (P<0.05, n=3).  
Note: Figure 4b is a modified version of Figure 5 of a previous article.10
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Figure 5. Heterologous multicellulase ratio optimization. (a) E1 and CBH I ratio optimization 
using CMC substrate incubated at 50 ºC and 90 rpm shaking for 72 h. In this graph, plant E1 
means tobacco-produced heterologous E1 used as positive control. Commercial NovozymeTM 
188 (A. niger cellobiase) was added to heterologous E1 or E1:CBH I crude protein mixtures 
because accumulation of cellobiose inhibits the conversion of CMC into fermentable sugars; (b) 
SCP means commercial Spezyme CP (a mixture of endo and exo-glucanase) mixed with 
commercial β-glucosidase (NovozymeTM 188). The E1:CBH I:Cellobiase ratio optimization was 
performed via DNS assay using AFEX-pretreated corn stover representing 1% glucan as 
described in the methods section 



In press, 2011 31

Table 1. Estimation of heterologous cellulase productions in dry mature corn stover versus corn 
silage.  

662 
663 
664  

Heterologous 
Cellulase 

Transgenic 
lines 

% cellulase in 
crude protein 

extract 

Approximate 
Heterologous 

Cellulases (g) / ton 
dry mature corn 

stover 

Approximate 
Heterologous 

Cellulases (g) / ton 
corn silage 

5a 2.0 400 752 
19e 0.2 33 75.2 
21 0.2 33 75.2 
21c 0.3 67 112.8 

  
E1 

21g 0.7 133 263.2 
3-1 3.11 622 1165.6 
9-18 2.2 436 827.2 
9-2 1.8 368 676.8 
2-1 1.6 314 601.6 

 Cellobiase 

10-24 0.9 182 338.4 
 665 


	The Invitrogen NuPAGE® Bis-Tris Discontinuous Buffer System with a 10% NuPAGE® Novex Bis-Tris Pre-Cast Gel was used for Western blotting of T0 transgenic plants according to the manufacturer instruction (Invitrogen, CA).
	The research presented here is indeed a step forward in the quest for commercialization of biomass crop-produced heterologous cellulases as an alternative or supplement to current microbial-based cellulase production for cellulosic biofuels.45

